skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gołkowski, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Solar flares have profound impacts on the lower ionosphere and long‐distance radio propagation. Extremely low frequency (ELF: 3–3,000 Hz) waves are challenging to observe and experience unique interactions with the lower ionosphere. The primary natural sources of ELF waves are thunderstorm lightnings across the globe. Using a newly developed azimuth determination technique and improved observation hardware we show that ELF attenuation in the Earth‐Ionosphere spherical cavity decreases and propagation velocity increases under the influence of an M‐class solar flare. Using a two‐parameter model of the lower ionosphere, the observations are shown to be consistent with increased electron density and sharper gradients in the D‐region resulting from X‐ray radiation. The sharper electron density gradient is primarily responsible for the propagation velocity increase, suggesting a unique capability that ELF observations can bring to global remote sensing of the lower ionosphere under space weather perturbations. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. A new method is proposed for deriving extremely low frequency (ELF) wave arrival azimuths using the wide range of signal amplitudes, contrary to previously applied high amplitude impulses only. The method is applied to observations from our new magnetic sensor in the Hylaty station with an 18 bit dynamic range and a 3 kHz sampling frequency. We analyzed a day of 15 January 2022, to test the procedure against the ability to extract ELF signals generated during the Hunga Tonga volcano eruption. With complementary filtering of power line 50 Hz signatures, precise azimuth information can be extracted for waves from a multitude of thunderstorms on Earth varying during the day at different azimuths. A phenomenon of successive regular variation—decay or activation—of thunderstorms activity with varying azimuth is observed, possibly due to passing over the solar (day/night) terminator, and signatures of azimuth direction change during this passage can be noted. We also show that the erupting Hunga Tonga volcano associated impulses dispersed due to a long propagation path are clearly revealed in the azimuth distribution with analysis using parameters fitted to measure slowly varying signals, but not for fast varying impulses. We show that the Hunga Tonga related signals arrive from the azimuth ≈10° smaller than the geographic great circle path. The discrepancy is believed to be due to propagation through the polar region and in the vicinity of the solar terminator. 
    more » « less
  3. Abstract The Extremely Low Frequency band (ELF: 0.03–1,000 Hz) electromagnetic signals from thunderstorm lightning discharges can propagate around the globe in the Earth‐ionosphere resonance cavity and thus be used for ionosphere monitoring. We use ELF observations of impulses detected by the World Wide Lightning Location Network (WWLLN) to investigate ELF propagation velocity and arrival azimuth under diurnal changes over 2 days in September 2023. Also, temporary effects of solar flares' ionizing fluxes are monitored, leading to increase of the ELF signal propagation speed in proportion to the X‐ray flux intensity. We present a simple method for automatic and large‐scale analysis, utilizing data from two registration systems (our ELF reciever and WWLLN) and enabling easy evaluation of changes in wave propagation speed. Comparative analysis of WWLLN identified impulses generated in Africa and America reveals varying effects of signal refraction, with increased azimuth changes for signals propagating across the ionospheric ionization gradients associated with the day/night terminator. The method has a potential to become a standard tool for the analysis and monitoring of the lower layers of the ionosphere. 
    more » « less
  4. Abstract Lightning induced perturbations of the lower ionosphere are investigated with very low frequency (VLF) remote sensing on a unique overlapping propagation path geometry. The signals from two VLF transmitters (at different frequencies) are observed at a single receiver after propagation through a common channel in the Earth‐ionosphere waveguide. This measurement diversity allows for greater certainty in quantification of perturbations to the ionosphericDregion. Changes in amplitude and phase are modeled with the Long Wave Propagation Capability (LWPC) software package to quantify changes in reference height and steepness of the two parameterDregion electron density model. Since the nighttimeDregion profile prior to the perturbation is found to strongly affect the resulting quantification, and is highly variable and generally unknown at nighttime, an error minimization method for identifying the most likely ionospheric disturbance independent of the ambient profile is used. Analysis of 12 large lightning perturbations resulting from discharges with peak currents greater than 160 kA shows that the ionospheric reference height can change by 2–8 km. We investigate both early/fast events (direct ionization and heating from lightning) and lightning‐induced electron precipitation (LEP) events, induced by lightning hundreds of kilometer away. LEP events increaseDregion electron density while early/fast events can lead to a increase or decrease in electron density. Multi‐point observations along a VLF propagation path are needed to further improve ionospheric perturbation quantification with VLF remote sensing. 
    more » « less
  5. Abstract The lowest region of the ionosphere, theDregion, plays an important role in magnetosphere‐ionosphere coupling but is challenging to directly observe. The group velocity of the extremely low frequency (ELF; 3–300 Hz) portion of lightning induced electromagnetic radiation can be used to diagnose theDregion electron density profile. Day‐night conditions can be assessed using ELF receivers and lightning detection networks. Analytical formulations and the Long Wave Propagation Capability software package show that ELF group velocity has particular sensitivity to the sharpness of the exponential electron density profile. Applying the technique to sudden ionospheric disturbances shows that the group velocity increases in response to incidence of solar X‐ray flux . A small number of ELF receivers can provide a large‐scale diagnostic of theDregion. ELF remote sensing using lightning is complementary to very low frequency remote sensing and can be used to assess the Earth‐ionosphere propagation channel for very low frequency transmitters. 
    more » « less